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Aggregation processes generally lead to broad distributions of sizes involving exponential tails. Here, ex-
periments on the capillary-driven coalescence of regularly spaced flexible structures yields a self-similar
distribution of sizes with no tail. At a given step, the physical process imposes a maximal size for the
aggregates, which appears as the relevant scale for the distribution. A simple toy model involving the aggre-
gation of nearest neighbors exhibits the same statistics. A mean-field theory accounting for a maximal size is
in agreement with both experiments and numerics. This approach is extended to iterative fragmentation pro-
cesses where the largest object is broken at each step.
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Aggregation and fragmentation are fundamental in a num-
ber of physical and manufacturing processes involving a
broad range of object sizes: colloidal aggregation �1,2�, po-
lymerization �3� and polymer degradation �4�, aerosols �5�
and breath figures �6–8�, mixing �9�, formation of planets
�10�, ballistic aggregation �11,12�, phase separation �13,14�,
vortex merging �15�, and fragmentation by crushing �16,17�
or by drying-induced stresses �18–20�. The formalism of
Smoluchowski’s coagulation equation �1� is still at the base
of current theoretical effort, which focuses on scaling solu-
tions to the equations of evolution for the distribution of
object sizes, and on the convergence to these scaling solu-
tions, either in fragmentation �21� or in aggregation �22,23�.
Here we introduce aggregation and fragmentation processes
with a maximal size. Our primary motivation is the experi-
mental observation of the elastocapillary coalescence of flex-
ible lamellas into bundles �24,25�, which applies to macro-
scopic and microscopic systems. We showed that the
maximal number of lamellas per bundle is determined by a
balance between capillarity and elasticity. Here we study the
size distribution of bundles, and we introduce a correspond-
ing toy model which we simulate numerically and investi-
gate analytically in a mean-field approach. As far as we are
aware, we introduce the concept of a maximal size in the
dynamics of aggregation. Eventually, by analogy, we study
fragmentation with a maximal size. This type of process
might apply to the aggregation of charged colloids �26� or to
grinding �27�.

Elastocapillary coalescence. Let us first describe the ex-
perimental system. A brush made of regularly spaced poly-
ester strips is dipped into a wetting liquid, and then with-
drawn quasistatically up to a height L. At small L, the
lamellas remain straight �Fig. 1�a��, but at a first critical
value of L, pairs of neighboring lamellas stick together,

while some lamellas are left single between two pairs. A
cascade of similar sticking transitions occurs when increas-
ing L �Fig. 1�b��: pairs of bundles merge into broader clus-
ters. In contrast with usual time-dependent processes, the
history of the transitions can be recovered directly from a
single picture of the brush �Fig. 1�c��, as the withdrawal
height L replaces time. In other words, the resulting hierar-
chical pattern can be viewed as the space-time diagram of
either an aggregation or a fragmentation process �respec-
tively, from top to bottom and from bottom to top�. In �24�,
we found that for a given L, the maximum number of lamel-
las per bundle Nmax is given by Nmax

3 =16 /9�L4 / �dLec�2�. It is
a combination of three lengths: L, the separation between
lamellas d, and the elastocapillary length Lec= �� /��1/2 which
is the scale at which capillary forces balance elastic bending
forces �� is the bending rigidity of the lamellae and � is the
surface tension of the liquid�.
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FIG. 1. Elastocapillary coalescence. Experiments with a brush
made of flexible strips is progressively withdrawn from a bath of
wetting liquid �24�. �a� Small withdrawal height L. �b� At higher L,
bundles form successively. �c� Two bundles remain; if the vertical
coordinate is replaced with time, this picture might be viewed as a
space-time diagram for an aggregation process �from top to bottom�
or a fragmentation process �from bottom to top�.
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In an ideal cascade, all bundles would coalesce by pairs
so that they would all have the same size at a given L, fol-
lowing a geometric series 1 ,2 ,4 ,8 , . . . ,2m , . . .. This is not
the case at all in the experiment where a broad size distribu-
tion is observed. For a given withdrawal length L or equiva-
lently for a given maximum size Nmax, we counted the num-
ber n�N ,Nmax� of clusters of size N in a brush of Ntot

lamellas. The existence of a cascade process suggests a self-
similar distribution of the form

n�N,Nmax� =
Ntot

Nmax
2 ��N/Nmax� , �1�

where � is a scaling function unknown at this stage. The
power-law dependence 1 /Nmax

2 is a consequence of the con-
servation of the total number of lamellas through the cas-
cade. In fact � is proportional to the probability of finding a
cluster of given reduced size N /Nmax. This self-similar form
allows the approximate collapse of experimental data �Fig.
2�.

A toy model with aggregating particles. Particles of mass
�or size� 1 are initially evenly distributed on a line, with a
separation 1 between two consecutive particles; the position
of each particle is then perturbed with a small random
number—we chose 1% of the interparticle spacing and
checked that the results are insensitive to this choice. The
following elementary process is then iterated at each time
step t: the two neighboring particles �masses m1 and m2� with
the smallest interspacing are merged and replaced with a
particle of mass m1+m2 located at their center of mass. The
simulation also results in a cascade of sticking transitions
�schematic in Fig. 3� and leads to a broad size distribution of
clusters. Because of geometry and the sticking rule, clusters
of mass M appear only after all possible smaller sizes are

formed, so that we also obtain a process with maximal size.
As in experiments, we define a maximal mass M�t� for the
clusters. Let n�m , t� be the number of particles of mass m at
time t. The distribution of masses can be rescaled according
to

n�m,t� =
Mtot

M�t�2�„m/M�t�… , �2�

Mtot being the total mass in the system. After a number of
iterations of the order of 0.9Ntot, the distributions obtained
from the toy model collapse on the same curve �Fig. 2�,
which is close to the experimental data.

A mean-field theory. We build here a coalescence process
using kinetic equations �1,23�. Consider a large collection of
particles progressively aggregating. We use the mass m of a
particle and the time t as mathematical representations of the
size of a bundle and of the withdrawal height L, respectively.
Let n�m , t�dm be the density of particles of mass larger than
m and smaller than m+dm. The evolution equation for
n�m , t� reads

�n

�t
�m,t� =

1

2
� dm1dm2�K�m1,m2�n�m1,t�n�m2,t�

���m1 + m2 − m��

−� dm1K�m,m1�n�m,t�n�m1,t� , �3�

where � is Dirac’s distribution. The first integral corresponds
to the creation of particles of mass m through coalescence of
particles of mass m1 and m2 with a rate K�m1 ,m2�, whereas
the second integral stands for the anihilation of particles of
mass m through coalescence with a particle of mass m1. The
crucial question is how to define the kernel K. In classical
aggregation theory �23�, this kernel is constant. Here, since
only bundles of size Nmax�L� are created at a withdrawal
height L, we take the maximum mass in the system as a
given increasing function of time M�t� and we set
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FIG. 2. �Color online� The scaling function for the statistics of
sizes �proportional to the probability distribution function�. If
n�N ,Nmax� is the number of bundles �particles� of size N when the
maximal size is Nmax, Nmax

2 n�N ,Nmax� /Ntot is plot as a function of
N /Nmax. Experimental data �symbols� for Nmax� �6,11�; toy model
results starting with 106 particles after 9.5�105, 9.7�105, and
9.9�105 iterations �nonsmooth lines�; solution of the mean-field
model for ��0.56 �smooth line�.
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FIG. 3. A sketch of the toy model. It starts with approximately
evenly spaced particles. The iteration rule is that, successively, the
two neighbors with the smallest interspacing are merged, imposing
the conservation of the center of mass �see text�.
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K�m1,m2� =
2

�� dm n�m,t�
��M−1�m1 + m2� − t� . �4�

This � function is the novelty here; it corresponds to the fact
that the two particles �masses m1,2� can coalesce if and only
if the sum of their masses is equal to the maximal mass M�t�.
If each particle could interact with the same probability with
any other particle, there would be no prefactor in the equa-
tion above. For particles distributed on a line, any particle
can interact with one of its two neighbors among Nclusters
=�dm n�m , t� clusters. However, the aggregation dynamics
imposes that particles cannot be ordered arbitrarily, e.g., the
sum of the masses of two neighboring particles cannot be
smaller than the maximal mass M�t�; otherwise they would
have merged before. Here we assume the existence of a well-
defined probability � such that the number of possible
neighbors is not Nclusters but �Nclusters, hence a probability
2 / ��Nclusters� of coalescence. � will be used as a fitting pa-
rameter in order to account for spatial correlations.

We look for self-similar solutions of Eqs. �3� and �4� in
the scaling form �2�. This leads to

��
0

1

��	1�d	1���	� +
1

2
���	�	

= ��	���1 − 	� −
1

2
��	 − 1��

0

1

��	1���1 − 	1�d	1.

�5�

It also appears that the dependence of the maximal mass
M�t� on time is unimportant. The decomposition ��	�
=�e�	−1 /2�+�o�	−1 /2�, where �e and �o are even and
odd functions, respectively, transforms Eq. �5� into a system
of ordinary differential equations with an integral constraint

2��
0

1/2

�e�u1�du1
1

2
u�e��u� +

1

4
�o��u� + �e�u��

= �e
2�u� − �o

2�u� , �6�

1

4
u�o��u� +

1

2
u�o��u� + �o�u� = 0. �7�

A solution to this system can be found for each value of
�e�0� �note that by parity �o�0�=0�. Due to the definition of
the scaling function, if ��	� is a solution of Eqs. �6� and �7�
then 
��	� is also a solution, so that one might choose �e�0�
to ensure the normalization �	��	�d	=1, which corresponds
to the scalings �1� and �2�. The value ��0.56 gives the best
agreement with the numerical data as shown in Fig. 2.

Thus we showed that the elastocapillary coalescence can
be described as an aggregation process, where the maximal
size is the key ingredient and sets the typical size of bundles
or masses. In particular, the distribution has no tail as �
vanishes above 1.

Fragmentation with a maximal size. As an extension, we
now introduce fragmentation processes with a maximal size.
We consider a collection of fragmenting particles. At each

step the largest particle is broken. This is the analog of form-
ing clusters with the maximal size in the processes intro-
duced above. Keeping the same notations, the general kinetic
equation for the mass density n�m , t� reads

�n

�t
�m,t� = − n�m,t��

0

m

dm1K�m1,m − m1�

+ 2�
m

�

dm1K�m,m1 − m�n�m1,t� . �8�

The first term in the right-hand side corresponds to all frag-
mentation events of a particle of mass m into two particles of
mass m1 and m1−m. The last term corresponds to all creation
events of a mass m from the fragmentation of a mass m1. The
dynamics is that the largest mass is broken into two masses
m1 and m2. The size probability of the fragments is
p�m1,2 / �m1+m2�� �p must be symmetric with respect to 1/2�.
This is achieved by imposing the maximum mass M�t� as a
decrasing function of time and a reaction rate in the form

K�m1,m2� =
1

m1 + m2
p� m1

m1 + m2
	��t − M−1�m1 + m2�� .

�9�

We look for solutions of Eqs. �8� and �9� in the scaling
form �2�. This leads to an ODE for � which solution reads
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FIG. 4. The fragmentation model. At each step, the largest seg-
ment �length �� is cut into two fragments of lengths u� and
�1−u�� with a probability p�u�. �a� A uniform cutting probability
�dashed line� or a peaked one �p�u�=30u2�1−u�2, continuous line�.
�b� Corresponding scaling function for the statistics of lengths: uni-
form cutting �dashed line� and peaked cutting �continuous line�.
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��	� =
2

	2�
0

	

	1p�	1�d	1, �10�

with the normalization ��1�=1. Again, if the cutting prob-
ability is uniform �p�	�=1�, then the size distribution is uni-
form �Fig. 4�. To obtain distributions which are qualitatively
similar to those of the fragmentation process, one must take
a probability p�	� that is peaked when the two fragments
have the same size �maximum for 	=1 /2�. For instance, for
p�x�=30	2�1−	�2, Eq. �10� yields ��	�=	2�15−24	+10	2�,
which is plotted in Fig. 4.

Conclusion. We introduced the concept of maximal size in
both aggregation and fragmentation processes. This approach

was inspired by the elastocapillary coalescence experiments
and it allowed us to retrieve the experimental results. It
might be relevant to grinding �27�: if solid blocks are
crushed in between two parallel jaws, the largest block is
first broken. In the case of the aggregation of charged col-
loids �26�, a maximal size seems to be imposed by a compe-
tition between coalescence and electrostatic repulsion. The
minimal ingredients included in our contribution should war-
rant robustness and possible generalization to other physical
systems.
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